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Introduction

While the use of nonorthogonal basis functions in atomic and molecular calculations,
employing the Ritz variational method, renders the wave function more flexible [7, 57, it can,
under certain unfavourable circumstances, cause the so-called “linear dependence™ problem
[1], or more correctly, the “near linear dependence” problem. When the linear dependence
problem arises in a variational caleulation, the calculated results usually become unstable [3];
it also causes a loss of the accuracy [6]. Occasionally, one can remove this difficulty by drop-
ping the “bad’ functions from the wave function. However, this is not a satisfactory solution,
since this problem is most likely to happen when two or more similar functions, centered on
the same spatial point, are included in the wave function. The effect, on the calculated results,
of excluding the “bad’ functions, instead of using a suitable set of parameters for the functions,
is usually not assessed ; but, in view of the circumstances where this difficulty is most probable,
this effect, if assessed, might prove to be a rather significant loss.

Furthermore, because of the difficulty in explicitly handling the nonlinear parameters as
a continuous variable in a calculation based on the variational principle, it is customary to
choose an initial set of values for these parameters around which one then searches for the
optimal values. By varying the nonlinear parameters over a sufficiently wide range, one can,
in principle, obtain the absolute energy minimum attainable with the basis set. However, this
is impractical, in most cases, because of the economical factor and the higher possibility of
running into the linear dependence problem. As a consequence, it necessitates, on the one
hand, a much larger basis set in order to attain a certain energy [5]. On the other hand, it may
lead to a peculiar situation where different people find different local energy minima**,

A Method of Avoiding the Linear Dependence Problem

In this report, a method of avoiding the linear dependence problem, and con-
sequently, of giving full flexibility to the wave function is described.

Let us assume a set of square-integrable functions, {f;(x:, i)}, 1 =1,2,..., n,
where «; and f§; are nonlinear parameters, such as the exponential parameters of
elliptical orbitals {7]. We will use the convention that parameters with a subscript,
such as o; and f;, have been assigned some constant values while those without a
subseript, e.g., « and §, are to be regarded as variables. We will further assume that
the set {f;(xs, Bi)} does not give any linear dependence problem. To this set of

* This research was supported by the National Science Foundation.

** For example, J. C. BROWNE [J. chem. Physics 41, 3495 (1964)], using a seven-term wave
function, given in Tab. 4 therein, with the parameters listed in Tab. 5 thereof, obtained a
total energy of —7.7269 a.u. for LiH* at the nuclear distance of 4.25 a,. However, if the para-
meters are changed to «(3) = 3.45, A(3) = 2.70, «(4) = 4.80, and B(4) = 2.94, one obtains
—7.7274 a.u. at the same nuclear distance.
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functions, we want to add another function, f41(«, §), and determine the values
of oc and f3, which can be used with the original set, free of the linear dependence
problem. For simplicity, we will assume that the functions f;,7 = 1,2,...,n,n + 1,
are normalised to unity.

The lowest 0ot Amin = 0, of the equation
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(1t = [ s Bi) s, ) o @)

is defined as the “measure of linear independence™ [2, 6]. Since the linear depend-
ence problem arises when Amin is very small*, to avoid this difficulty we want to
find the domain of the variables, & and 3, over which Am;y satisfies the condition,
Amin = constant. Let us set up the equation
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where g;(«, ), defined by
(00, B) = [ st Bo) Fualos, ) o

are explicit functions of « and . On expanding Eq. (3), one obtains a polynomial
equation

P, ) = Am+— (n+ 1) An + Rylor, B) AT +...... T hpaalo, f)=0.  (5)

Let us assume a positive constant ¢ to be the acceptable lower limit of Amin.
That is, the values of & and 8, which do not cause the linear dependence problem,
satisfy Amin (, B) > ¢. One substitutes 1 = ¢ into Eq. (5) and solves for « and f.
Since the A’s are continuous functions of the parameters « and § [§], the solutions
of P(c:e, ) = 0 can always be found. The roots are the values of x and § for
which one of the n + 1 A’s intercepts the line A = ¢. For the case of functions with
a single parameter, a typical diagram appears as in Fig. 1.

In a practical application, there are two ways of choosing the functions, f;.
One can take, as f;, either each term of a CI wave function, or a basis function
such as the elliptical orbital or the Slater type orbital. The more profitable choice
of f; is the latter where use is made of the fact that configurations composed of a
basis set, which is not linearly dependent, do not give the linear dependence prob-
lem.

The author wishes to thank Professor H. SEULL for his valuable criticism.

* Usually the ratio Amin/Amsx, OT Amax/Amin, Tather than Ami, is used as a test of the linear
dependence. If one uses a normalised basis set, Amax < m, where m is the number of basis func-
tions in the set. Since m is known, one can always use Amin for this purpose. As for the value of
Jmin Which may cause the linear dependence difficulty, there is not a universal opinion. Differ-
ent criteria are used by different people.
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Fig. 1. log Amin ( } and P(c: ) (—~——.) versus «. ¢ = 105,

fr = @V2)e7®, f, = BVB2)e%, fy = (2/YB)re, f, = (2 a’la)e .
Amin is included for a comparison. Insets are Amis and P(c:«) in the range: & = 0.815-—0.840.
Intercepts of P(c: «) with the Line P(c:«) = 0 correspond to the values of o for which Amin = c.
If ¢ is the lower limit of Am:n, the value of «, for /,, within the shaded regions causes the linear
dependence problem when used with f,, f,, and f, given above
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